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The method used by Karle & Hauptman for deriving inequalities is applied to structures possessing 
a centre of symmetry. I t  is shown that all inequalities which have been derived, or may be derived, 
may be found by purely algebraic means from four sets of inequalities, the fundamental inequalities. 
The fundamental sets, derived in a previous publication, appear among them. 

1. Introduction 

Though many useful inequalities have been found, 
it is still an open question whether other, more power- 
ful, inequalities exist. To answer this question, a 
systematic derivation and enumeration of inequalities 
is indicated. In a previous publication (de Wolff & 
:Bouman, 1954) this question was answered for the 
structure factors U(H),  U(H'),  U(2H), U(2H'), 
U ( H + H ' )  and U ( H - H ' ) .  A set of four inequalities 
was found from which all others could be derived. 
This result followed from the application of a new 
method (using the calculus of variations) and also 
from elementary methods used by Harker & Kasper 
(1948). But the last-named methods are not suited to 
a systematic treatment and the new method is too 
difficult to be applied to other sets of structure factors. 

I t  has now been found that  the method due to Karle 
& Hauptman (1950) leads to the complete answer, 
and enables us to classify all inequalities. In other 
words, it will be possible to give a set of inequahties 
from which all others may be derived. I t  will also be 
possible to write down all inequalities which may be 
derived from an independent set. In this paper no 
other symmetry elements than the centre of inversion 
will be treated. 

2. Recapitulation of the theory of 
Karle & Hauptman 

We consider a set of N reciprocal vectors Hp and a 
space (which has nothing to do with real space) of 
the same number of dimensions. Its coordinates are 
designed by Xp. :Now it has been proved that  the 
quadratic form 

U = ..~,..~, U ( H v - H ~ ) X v X  q =- .~,..~ UvqXvX q (1) 
P q P q 

is positive definite, if the number N is less than the 
number of atoms in the cell; in the other case U is 
only non-negative. U(Hp-Hq)  is the unitary structure 
factor 

U(Hp-Hq)  = .~" ni exp 2xd [(hv-hq)x ~ 
i 

"4- (kp-- ]cq)y i-4- (lp-- lq)zi] , 
with ~7 ni = 1.  i 

As only differences of the reciprocal vectors appear 
in our expressions, we may subtract H~ from all 
vectors, in the new set H~ = 0, 0, 0. 

The quadratic form is a Hermitian form, as Uqv = 
Upq. This form is related to a Hermitian transformation 

Yp = ~ Uvq Xq (2) 
q 

which transforms a point Xp into a point Yp. The 
matrix of this transformation is 

i Ull U12 U13 "'" U1N 1 
U21 U22 U2a . . .  U2~ . (3) 

:Now from the positive definite character of the 
quadratic form it follows that  all principal minors of 
the determinant, formed from the matrix, are positive. 
In this way a great number of inequalities may be 
found. We may add that  all elements on the diagonal 
Uvp are 1. 

We will now consider especially eentrosymmetrie 
structures. Then the structure factors are real and the 
Hermitian matrix becomes a symmetric matrix. In 
the transformation (2) we have only to consider real 
values of the coordinates. 

3. Exposi t ion of the method  used in this  paper 

We have seen that  from the positive definite character 
of the transformation it follows that  all principal 
minors are positive. Inversely, if all principal minors 
are positive, the positive definite character of U is 
ensured. :But it can be proved (Littlewood, 1950, pp. 
44-7) that it suffices to assume 

U n > 0 ,  ]Ull U121 U~I U~2 > 0  and so on (4) 

in order to prove U to be positive definite. :Now the 
following considerations will prove to be useful: 

(A) U > 0 is equivalent to the set of inequalities (4). 
So, if from U > 0 it follows that  all principal minors 
are positive, then it follows also from the inequalities 
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(4). We m a y  state this result also in this way: The 
inequalities (4), or U > 0, can only be proved from 
the definition of U(H) with positive hi. But if these 
inequalities are given, then the other inequalities, 
being other principal minors than those of (4), can 
be derived from (4) by purely algebraic means without 
any assumption on the form of U(H). In the paper 
by de Wolff & Bouman (1954) examples of these 
algebraic deductions may be found. 

(B) We have by no means exhausted the number of 
inequaIities, which can be derived from (4). For we 
may choose other coordinates in the space Xp. If 
these new coordinates are obtained by an orthogonal 
transformation, the symmetric character is preserved 
by this change of coordinates. The new expression for 
U is still positive definite, and so the principal minors 
are positive; they constitute new derived inequalities. 

The change of coordinates from Xp to X~ is given 
by 

! Xp = ~ a~X~ , 
q 

with 
2 = ] ,  2 ;  = 0 .  (5) ~_~ apq apqapr  

p p 

This applies to a symmetric form. In the case of com- 
plex Upq, and so of Hermitian forms, the properties 
of the change of coordinates become 

Z avqgpq -= 1, .a~ apqSpr = 0; (5a) 
p p 

this change is denoted by the name unitary transfor- 
mation. 

(C) I t  will be an advantage if we can choose the 
new coordinates in such a way that  the ensuing matrix 
has a simpler form than the original one. In general 
this will not be possible, as there exist no relations 
between the structure factors. But for centrosymmetric 
structures U(H) = U(-H) we have found that sym- 
metric matrices may be simplified by a suitable change 
of coordinates if they are doubly symmetric, i.e. with 
respect to both diagonals. We have to consider sepa- 
rately matrices with an even and with an odd number 
of rows. Then the matrix 

l 
p q a s t 
q r b u s 
a b c b a , 
s u b r q  
t ~ a q p 

(6) 

which is doubly symmetric, is transformed by the 
change of coordinates 

into 

x;= ½I/2.x~+½V2.x~, ] 
x;= ½V2.x,+½V2.x,, 
X ~  = X3, 
X~ = -½~/2.Xo+½~/2.Z4, 
X~ =- -½V2.X~+½]/2.X5, 

(6a) 

i p+t q+s a~/2 0 0 i q+s r+u b]/2 0 0 
aV2 b]/2 c 0 0 . (6b) 
0 0 0 r--u q--s 
0 0 0 q--s p--t 

In the same way we find that  the matrix 

q r u s (7) 
8 u r q 
t s q p 

is transformed by the same change of coordinates; 
omitting the middle term X~ = X3, into 

[ p+t q+s O 0 l q+s r+u 0 0 (7a) 
0 0 r - u  q -s  
0 0 q-s  p--t 

These results are easily extended to matrices with 
another number of rows. Now if the quadratic forms 
related to these matrices are positive definite, then 
the equivalent statement (4) can be written with the 
help of simple determinants. In § 4 it will be shown 
that these matrices can indeed be constructed from 
the unitary structure factors. The transformations, 
mentioned in (B), can better be applied to the matrices 
in the form (6b) and (7a). They will give more amen- 
able results. 

4. The  derivat ion of f u n d a m e n t a l  inequal i t ies  

Instead of studying all kinds of matrices to be derived 
from (3) we will consider only matrices of the form 
(6) or (7). As regards (6) we may construct this matrix 
by ascribing to the middle row the reciprocal vectors 

- H  n . . .  - H  a -H~ - H  1 0 H 1 H 2 H 3 . . .  H a . (8)  

Then the unitary structure factors at the left will be 
equal to those at the right. The first row is then de- 
scribed by adding Hn to the row, given above, so we 
find 

0 . . .  Hn-H 3 Hn-H~ Hn-H 1 Hn H,~+H1 . . .  2H~. 
(9) 

The matrix will be doubly symmetric. This may be 
proved easily, or it may be seen immediately by 
writing down the middle part of the matrix. This is 

1 U(H1-H2) U(H2) U(HI+H~) U(2H2) 7 
U(H1-H~) 1 U(HI) U(2Hx) U(HI+H~) 
U(H~) U(tt 0 1 U(H1) U(H~) 
U(HI+H~) U(2H1) U(H 0 1 U(H1-H2) 
U(2H~) U(HI +H2) U(H~) U(H1-H~ ) 1 

(lO) 
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:Now transforming into the form (6b), we find 

0 0 -  

P 0 0 

0 0 
0 0 0 

with 

O--- 

L0 0 0 

1 + U(2H~) 
U (Hi E H~) ÷ U (H1-H2) 

U(H~)~/2 

i i -  U(2H~) 
_ U ( H i ÷ H , ) -  U ( H i - H , )  

U(HI + Hg) + U(H1-H~) 
I + U(2H1) 
U(H1)V2 

U (HI + H~)-  U (H1-  H9 ) -] 
1 - U(2H1) J 

(12) 

All inequalities to be found from (10) can be found 
from five fundamental  inequalities. We choose them 
by taking first the last minor and then working up- 
ward through the matrix.  They are: 

(I): 1 -  U(2H~) > 0 ,  

(II): [1-U(2H~)][1-U(2H1)  ] 
> [U(HI+H~)-  U(Ha-H2)]2; 

(III) is identical with II .  

(IV) is the product of the minor (II) and 
1 + U(2H1)-2  U(H1) 9, 

SO 
I + U ( 2 H  i) > 2U(H1) 2 . 

(V) states tha t  the determinant  of the entire matrix 
is positive, but  as this determinant is the product of 
[PI and [Q] and the last is already positive (II) we 
find IP[ > 0. This determinant  may be written in a 
simpler form, by subtracting the third row, mul- 
tiplied by U(H~)V2 from the first one, and then sub- 
tracting the same row, multiplied by U(H1)V2, from 
the second row. The result is 

Gii > O, I Gii Gm ] 
Gi2 G22 > O, 

I F l l  F12[ 

Gn G12 Gla 
GI~ G22 G23 
G13 G23 G33 

> 0, and so on .  

~ 0 ,  • o .  • 

(13) 

(14) 

The first inequality of (13) and the second from (14) 
are found by Harker & Kasper (1948), the second from 

U(H~)~/2 l U(H1)V2, (11) 
1 

(13) by de Wolff & Bouman (1954). F n > 0 is trivial. 
The inequalities contain the reciprocal vectors Hk, 2Hk 
and Hi-4-Hk. 

5. Other fundamental inequalities 
I t  may be remarked tha t  we are free to choose in the 
matrix, defined by its first row (9), other sets of 
reciprocal vectors, e.g. H n - H  a = Hi, H n - H 9  = H~, 
and so on. In  this case we will find seemingly different 

t 
inequalities, expressed in Hp. But  evidently from § 4 
the simplest way of writing the inequalities is the 
denomination we have used. 

In  order to free ourselves from this ambiguity, we 
can represent the reciprocal vectors in the reciprocal 
lattice. Then the row (8) contains the origin and next 
to each vector H the vector - H ;  all points form a 
symmetrical figure or set of points, including the origin, 
which is the centre of symmetry  of the figure. Now 
the row (9) is represented by the same figure, but 
translated over H~. So now the origin is one of the 
points, and H~ the centre of symmetry.  

We turn now to matrices with an even number of 
rows. Clearly we can get them by cancelling the middle 
row and column of the matrices we have just con- 
sidered. This would give no new results, as they can 
only yield inequalities, derivable from the sets (13) 
and (14). But  if we now choose reciprocal axes in 
such a way tha t  H~ has no longer integral values for 

I 1 ÷ U(2Hg)-2U(H2) 9 
U (H1 + H~) + U (H1-H~) - 2  U (H1) U (H2) 

So, instead of five fundamental  inequalities from (10), 
including a determinant  with 5 rows (and the trivial 
inequali ty 1 > 0), we find only four, with no more 
than two rows. Now the argument can be readily 
extended to an arbi t rary  number of reciprocal vectors. 
Writing 

G~k = U ( H i - H k ) + U ( H i + H k ) - 2 U ( H i ) U ( H k ) ,  
Gii = 1 + U(2Hi) - 2U( Hi )  2 , 
Fik = U ( H i - H ~ ) -  U(Hi+Hk) ,  
Fii = 1 - U (2Hi) , 

we find tha t  the inequalities, following from the matrix, 
defined by the row (9), are fully determined by the 
sets 

U (H, + H~) ÷ U (H i -  H~) -  2 U (H1) U (H2) ] 
1 + U(2H1)-2U(H1)9 . > 0 .  

hkl, while 2Hn does, we get new inequalities. Geomet- 
rically we can say tha t  the new constellation, corre- 
sponding to the first row, is again a symmetrical 
figure, containing the origin, but the centre of sym- 
metry does not belong to the set, not being a reciprocal 
vector. If now the last reciprocal vector in the row is 
deno ted  by H, then to each vector Hi there exists 
another H~ with Hi+H'  i = H, as was the case in (9). 
So the first row of the mat r ix  will be 

0 . . .  H 2 H 1 H - H 1  H - H 2  . . .  H .  (15) 

We will refrain from writing the matr ix in full, and 
state only tha t  it contains uni tary structure factors, 
belonging to Hi, H - H i ,  H - 2 H i ,  H i - H k  and 
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H-(Hi+H~).  This is a new set. I t  would be the 
same as the set from § 4, if H = 0. This, however, 
is impossible, as then  the de te rminant  would contain 
two equal rows, and so would be identical ly zero. 
Reducing the mat r ix  in the same way as above (cf. 
(7) and (7a)) we find a set of inequali t ies 

I ± U ( H )  U(H~)±U(H-HI)  

2n (15). We get then  four sets of inequalities,  the  
largest de terminants  having only n rows (of. (13), 
(14), (17) and (18)). And these inequali t ies are more 
powerful t han  the aforementioned, because the original 
matr ix ,  from which they  are derived, contains the  
mat r ix  1 . . .  U(H,,). The four sets consti tute all 

U(H2)±U(H-H~) . . .  
U(H1)± U(H-H~) 1± U(H-2HI)  U(H~-H2)± U(H-H~-H~) .  . . 
U(H~)±U(H-H~) U(H1-H~)±U(H-H1-H~ ) I±U(H-2H~) .  . . 

Expression (16) represents two sets, one with the 
positive sign, the other with the negative sign. If we 
write 

Dik = U(Hi-Hk)+ U ( H - H i - H k ) ,  
Ci¢ = U ( H i - H k ) -  U(H-Hi-HI:)  , 

and put  H 0 = 0, we m a y  write (16) 

D00 > 0, D00 D01 D0o Do1 D0~ 
D01 D n > 0 ,  Do1 D n D12 > 0 ,  . . . ,  

Do~ DI~ D ~  (17) 

Coo > O, Coo C°1 I 
Co I Cn  , > 0, and so o n .  (18) 

As in the case of (13) and (14), we have chosen the 
simplest  denominat ion of the reciprocal vectors. We 
might  replace H by  HI+H~+. . .  without  much  ad- 
vantage.  If  we consider only two reciprocal vectors, 
H and  H1, then  this procedure gives 

I I+U(H~+H2) U(H~)+U(H2) [ 
U(H1)±U(Hg) I±U(HI-H2)  > O, 

and these are well known inequalities. 

6. The complete set of fundamental 
inequalities 

If the method,  described in the preceding sections, is 
applied to acentric structures, we get the same results 
as Karle  & H a u p t m a n  (1950). We can s tudy the mat r ix  

1 U ( H ~ ) U ( H ~ ) . . .  U(Hn) ,  (19) 

then  all inequali t ies following from this mat r ix  m a y  
be derived from the set 

1-]U(H1)I  ~ > 0 ,  

1 U(H1) U(H~) 
U(-H1) 1 U(H~-H1) >0 ,  and so on. 
U(-H2) U(H1-H~ ) 1 

The last  inequaliiiy has been found by  Kar le  & 
H a u p t m a n :  

[1 - [ U  (H1) I~]. [1 - ] U  (H~)[ 2] 
> [U(H1-H~)-U(H1)U(-H~)[.  (20) 

So for n vectors we get n inequali t ies (omitting 1 > 0) ; 
the last one is a de terminant  with n + l  rows. 

In  the case of centrosymmetr ic  structures the row 
can be amplif ied to 2 n + l  structure factors (8), or to 

> 0. (16) 

fundamenta l  inequalities, with this  restriction tha t  we 
m a y  relabel the reciprocal vectors H 1, H2 etc. But  in 
each case the two sets (13) and (14) cover other com- 
binations of the reciprocal vectors t han  (17) and (18). 
0 n l y  in the case of two reciprocal vectors did we f ind 
tha t  with a suitable choice of the reciprocal vectors 
the last two sets contain a par t  of the combinat ions of 
(13) and (14). 

I t  might  be asked if it  is possible to construct other 
matrices than  the doubly symmetr ic  matrices we have  
used, and so get other inequali t ies by  reducing them. 
We are not able to give a str ingent  answer to this  
question, but  m a y  remark tha t  each structure factor 
must  appear  at least four t imes in such a matr ix ,  if i t  
can be reduced (in the original mat r ix  (19) each struc- 
ture factor appears twice for centric structures). As no 
relations are assumed between the structure factors 
(this m a y  be the case for other space groups) we can 
reduce the mat r ix  only if the same structure factor  
appears more than  twice. The doubly symmetr ic  
mat r ix  is the simplest  way to fulfil this  condition, and  
we have found no other possibilities. 

We m a y  end by asking for the condition tha t  the  
inequali t ies become equalities, i.e. tha t  the determi- 
nants  are zero. 

For the general case (3) the answer has been given 
by  Goedkoop (1952, p. 82): the number  of a toms is 
less t han  the number  of rows. So the inequal i ty  (20) 
will be an equal i ty  for two or one atoms in the cell. 
The answer for the centrosymmetr ic  structures can 
be found by  applying the method given by  Goedkoop 
to the matrices discussed here. As the result  has no 
practical  importance,  we will ment ion without  proof 
tha t  the same rule obtains for the matrices with n or 
n +  1 rows, found by  reducing the doubly symmetr ic  
matrices 2n or 2 n + l ,  if we replace 'number  of a toms '  
by  'number  of pairs of atoms'.  So (12) and (17a) will 

be equalities for one pair  of atoms, and (11) for two 
pairs. 
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